Gated XNOR Networks: Deep Neural Networks with Ternary Weights and Activations under a Unified Discretization Framework

نویسندگان

  • Lei Deng
  • Peng Jiao
  • Jing Pei
  • Zhenzhi Wu
  • Guoqi Li
چکیده

Although deep neural networks (DNNs) are being a revolutionary power to open up the AI era, the notoriously huge hardware overhead has challenged their applications. Recently, several binary and ternary networks, in which the costly multiplyaccumulate operations can be replaced by accumulations or even binary logic operations, make the on-chip training of DNNs quite promising. Therefore there is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multistep neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNORNets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-theart algorithms. Furthermore, the computational sparsity and the number of states in the discrete space can be flexibly modified to make it suitable for various hardware platforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1

We introduce BinaryNet, a method which trains DNNs with binary weights and activations when computing parameters’ gradient. We show that it is possible to train a Multi Layer Perceptron (MLP) on MNIST and ConvNets on CIFAR-10 and SVHN with BinaryNet and achieve nearly state-of-the-art results. At run-time, BinaryNet drastically reduces memory usage and replaces most multiplications by 1-bit exc...

متن کامل

Loss-aware Binarization of Deep Networks

Deep neural network models, though very powerful and highly successful, are computationally expensive in terms of space and time. Recently, there have been a number of attempts on binarizing the network weights and activations. This greatly reduces the network size, and replaces the underlying multiplications to additions or even XNOR bit operations. However, existing binarization schemes are b...

متن کامل

TernaryNet: Faster Deep Model Inference without GPUs for Medical 3D Segmentation using Sparse and Binary Convolutions

Deep convolutional neural networks (DCNN) are currently ubiquitous in medical imaging. While their versatility and high quality results for common image analysis tasks including segmentation, localisation and prediction is astonishing, the large representational power comes at the cost of highly demanding computational effort. This limits their practical applications for image guided interventi...

متن کامل

The High-Dimensional Geometry of Binary Neural Networks

Recent research has shown that one can train a neural network with binary weights and activations at train time by augmenting the weights with a high-precision continuous latent variable that accumulates small changes from stochastic gradient descent. However, there is a dearth of work to explain why one can effectively capture the features in data with binary weights and activations. Our main ...

متن کامل

ADaPTION: Toolbox and Benchmark for Training Convolutional Neural Networks with Reduced Numerical Precision Weights and Activation

Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) are useful for many practical tasks in machine learning. Synaptic weights, as well as neuron activation functions within the deep network are typically stored with high-precision formats, e.g. 32 bit floating point. However, since storage capacity is limited and each memory access consumes power, both storage capacity and memo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.09283  شماره 

صفحات  -

تاریخ انتشار 2017